Entire Suite Working on the Uno

Entire Suite Working on the Uno

A successful Monday - got the entire sensor suite running properly.  

One notable - and very easily preventable - issue that I ran into: I had wired the RTC into a ground rail that didn't tie back to the Arduino's ground.  Always double-check your grounds!  It's easy to overlook, but it can cause a lot of confusing data problems.  A teachable moment, at least.

Moving forward:

Testing in the greenhouse begins this week.  I'll replicate the previous study's conditions as much as possible to see what kind of correlation we find.

 

Lars

 

Success on the Uno!

Success on the Uno!

The CO2 sensor problems from earlier this week were due to a faulty breadboard which left insufficient current for the sensor.  After swapping the whole array to a new board, the CO2, temp, RH, and SD card are up and running.  

Average values in the OPEnS Lab today:

CO2: 835 ppm, temp: 23˚C, RH: 45%

Next steps: coordinating with Elad to set up a more rigorous testing protocol, and wiring in the luminosity sensor when it arrives.  

 

Preliminary Testing on the Uno

Preliminary Testing on the Uno

Hi all,

Sensor testing has begun.  I've wired up everything to match Elad's configuration, excluding the problematic O2 sensor.  MicroSD, SHT31-D temp/RH, and DS3231 RTC are initializing successfully. However, the code is getting hung up on the K-30 CO2 sensor startup process.  I've isolated the CO2 sensor and will run test code on this sensor only.

Lars

Beginning Researcher

eGreenhouse back online for 2018

Hi all, 

I'm Lars, ecological engineering student at Oregon State University, and I'll be collaborating with Elad to push the eGreenhouse project forward.  

Next Steps:

  • Wire sensor suite and test previous code 
  • Port Arduino Uno code into Adafruit Feather (much smaller, lighter, more efficient)
  • Implement 2-way communication with the OPEnS Lab HyperRail for dynamic data 

Looking forward!

 

Lars Larson, Beginning Researcher

 

CO2/O2 Summer Research Summary and Data

CO2/O2 Summer Research Summary and Data

Integration of the different device sensors was successful and two 5-days measurement periods were conducted inside a laboratory and a greenhouse. Main conclusions at this stage are: (1) temperature, RH, and luminosity sensors were reliable and in the desired accuracy range, (2) problematic dependency of O2 sensor with temperature, (3) CO2 accuracy was not sufficient to measure the daily CO2 oscillations inside the experimental greenhouse.